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Abstract This paper presents a novel finite element method
of quadrilateral elements by scaling the gradient of strains
and Jacobian matrices with a scaling factor α (αFEM). We
first prove that the solution of the αFEM is continuous for
α ∈ [0, 1] and bounded from both below and above, and hence
is convergent. A general procedure of the αFEM has been
proposed to obtain the exact or best possible solution for a
given problem, in which an exact-α approach is devised for
overestimation problems and a zero-α approach is suggested
for underestimation problems. Using the proposed αFEM
approaches, much more stable and accurate solutions can be
obtained compared to that of standard FEM. The theoretical
analyses and intensive numerical studies also demonstrate
that the αFEM effectively overcomes the following well-
known drawbacks of the standard FEM: (1) Overestimation
of stiffness matrix when the full Gauss integration is used; (2)
Instability problem known as hour-glass locking (presence of
hour-glass modes or spurious zero-energy modes) when the
reduced integration is used; (3) Volumetric locking in nearly
incompressible problems when the bulk modulus becomes
infinite.
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1 Introduction

The finite element method (FEM) has been developed into a
reliable, robust and effective technique for engineering pro-
blems [23,43]. It is now widely used in engineering design of
structural systems due to its versatility for solids and struc-
tures of complex geometry and its applicability for many
types of non-linear problems.

In solving practical engineering problems, the lower-order
quadrilateral isoparametric elements are most popular and
widely used for simplicity, accuracy and efficiency. Howe-
ver, they have the following well known drawbacks: (1) When
the full Gauss integration is used, the FEM model is in
general “overly-stiff” with the internal strain energy being
underestimated. (2) They exhibit instability observed as
hour-glass modes or spurious zero-energy modes when the
reduced integration is used. (3) They lock in nearly incom-
pressible problems when the bulk modulus becomes infinite.
In order to overcome these drawbacks, various techniques
have been used for each kind. For the first drawback, many
assumed strain or mixed models have been proposed in the
past decades to reduce the stiffness of the standard FEM
model [2,8,22,24,28,29,31,32,34,35,37,40,42]. In these
models, the assumed displacement field is identical to that of
the standard FEM model, while the strain (hence the stress)
field is assumed independent of the assumed displacement
field.

Reduced integration technique has also been used to
reduce the stiffness of model [17,19,36,44]. However this
technique can lead to instability known as the hour-glass
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phenominon. To overcome the instability problem or to
suppress the zero-energy hour-glass modes, the addition of
a stabilization matrix need to be introduced [4–7,15,21,25–
27,33]. This stabilization matrix should preserve the condi-
tions of invariance and consistency which ensure that the
element passes the patch test. The stabilization matrix also
should not contribute to any deformation modes other than
the hourglass modes. The stabilization matrices have been
developed from the approaches based on the stabilization
parameters to the approaches which do not include artificial
stabilization parameters. These latest approaches use Taylor
expansion of the non-constant part of the shape function deri-
vatives for variationaly consistent stabilization [21,26].

To overcome the volumetric locking in nearly incompres-
sible problems, the first common technique is to use selec-
tive reduced integration [17,30]. The idea of this technique
is to decompose the material property matrix into two parts,
volume part and remaining part, and the stiffness matrix is
also decomposed into two parts correspondingly. The redu-
ced integration is then used only on volume-part and the full
Gauss integration is used on the remaining part. The second
technique is B-bar method which is generalized from the
selective integration procedures to anisotropic and nonlinear
media by Hughes [16,17]. The idea of this technique is to
improve dilatational part of strain-displacement matrix by
using reduced integration and then the full Gauss integration
is still used to calculate the stiffness matrix from “improved”
strain-displacement matrix.

To find a technique, still in the frame work of FEM using
the same form of Galerkin weak form, and to effectively over-
come the above drawbacks of FEM, we propose a finite ele-
ment method of quadrilateral elements by scaling the gradient
of strains and Jacobian matrices with a scaling factor α

(αFEM). We first show that the αFEM is clearly different
from the existing techniques mentioned above, and the for-
mulation is even variationally inconsistent! We then prove
that the solution of the αFEM is a continuous function for
α ∈ [0, 1], is bounded from both below and above, and hence
converges perfectly. This proof is further confirmed by sho-
wing that the present αFEM can always pass the standard
patch test for any α ∈ [0, 1], and detailed eigenvalue ana-
lyses. Next, a general procedure of the αFEM has been pro-
posed to obtain the exact or best possible solution for a given
problem, in which an exact-α approach is devised for ove-
restimation problems and a zero-α approach is suggested
for underestimation problems. Using the proposed αFEM
approaches, we will obtain much more stable and accurate
solutions compared to that of standard FEM. The theoretical
analyses and intensive numerical studies have demonstrated
that the αFEM effectively overcomes all the above mentio-
ned three drawbacks of standard FEM. Finally, based on our
intensive theoretical and numerical study in this work, we
put forward our argument that “variation consitency is not a

necessary condition for a numerical method”. A variationally
inconsistent method can well converge, have good properties
and produce more accurate solutions compared to the varia-
tionally consistent counterpart. Furthermore it is also true
that “variational consitency is also not a sufficient condition
for a stable numerical method”. A well-known example is the
quadrilateral FEM element with reduced integration, which
is unstable for the overestimation problems.

The paper is outlined as follows. In Sect. 2, the idea of the
αFEM is introduced. In Sect. 3, variational principle for exa-
mining the αFEM is performed. Some theoretical properties
of the αFEM are presented and proven in Sect. 4. Numeri-
cal implementation issues and examination are discussed in
Sect. 5. In Sect. 6, some numerical examples are conducted
and discussed to verify the formulations and properties of the
αFEM. Some concluding remarks are made in the Sect. 7.

2 The idea of the αFEM

2.1 Briefing on the finite element method (FEM)(see, e.g.
[3,17,18,23,43])

The discrete equations of FEM are generated from the
Galerkin weak form

∫

�

(∇sδu)T D (∇su) d� −
∫

�

δuT bd� −
∫

�t

δuT t̄d� = 0

(1)

where b is the vector of external body forces, D is a sym-
metric positive definite (SPD) matrix of material constants,
t̄ = {

t̄x t̄y
}T is the prescribed traction vector on the natural

boundary �t , u is trial functions, δu is test functions and ∇su
is the symmetric gradient of the displacement field.

The FEM uses the following trial and test functions

uh (x) =
NP∑
I=1

NI (x) dI ; δuh (x) =
NP∑
I=1

NI (x) δdI (2)

where NP is the number of the nodal variables of the element,
dI = [uI vI ]T is the nodal displacement vector and NI (x) =[

NI (x) 0
0 NI (x)

]
is the shape function matrix.

By substituting the approximations, uh and δuh , into the
weak form and invoking the arbitrariness of virtual nodal dis-
placements, Eq. (1) yields the standard discretized algebraic
equation system:

KFEMd = f (3)
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where KFEM is the stiffness matrix, f is the element force
vector, that are assembled with entries of

KFEM
I J =

∫

�

BT
I DBJ d� (4)

fI =
∫

�

NT
I (x)bd� +

∫

�t

NT
I (x)t̄d� (5)

with the strain matrix defined as

BI (x) = ∇s NI (x) (6)

In numerical performance, the isoparametric elements and
Gauss integration are usually used to calculate the entries of
stiffness matrix KFEM

IJ as follows

KFEM
IJ =

∫

�

BT
I (x) DBJ (x) d�

=
1∫

−1

1∫

−1

BT
I (x (ξ, η)) DBJ (x (ξ, η)) |J (ξ, η)| dξdη

=
M1∑
i=1

M2∑
j=1

BT
I

(
x

(
ξi , η j

))
DBJ

× (
x

(
ξi , η j

)) ∣∣J (
ξi , η j

)∣∣ Wi W̄ j (7)

where M1 and M2 are the number of Gauss integration points
in the ξ and η axes, respectively. In addition,

(
ξi , η j

)
are the

integration points and Wi and W̄ j are weighting coefficients.

2.2 The alpha finite element method (αFEM)

The αFEM is quite similar to the existing standard FEM pro-
cedure, except in calculating numerically the stiffness matrix,
we will substitute the strain gradient matrix BI (x) and the
Jacobi matrix J (ξ, η) of standard FEM by a scaled strain
matrix B̃I (x) and a corresponding scaled Jacobi matrix J̃,
respectively.

Consider quadrilateral elements and to write explicitly
the scaled strain matrix B̃I (x) and the corresponding scaled
Jacobi matrix J̃, we need to rewrite the strain vector εh and
the Jacobi matrix J (ξ, η) of standard FEM in other forms.
First, the strain vector εh can be rewritten in the summation
form of a constant part εh

c and εh
v (ξ, η) containing variables

ξ, η as follows

εh (x (ξ, η)) = ∇suh =
NP∑
I=1

BI (x (ξ, η)) dI

= εh
c + εh

v (ξ, η) (8)

For the bilinear isoparametric element, εh
c and εh

v (ξ, η)

have the following forms

εh
c =

⎧⎨
⎩

εc1

εc2

εc3

⎫⎬
⎭ and εh

v =
⎧⎨
⎩

ηεv1

ξεv2

ξεv1 + ηεv2

⎫⎬
⎭ (9)

where εc1, εc2, εc3, εv1 and εv2 are scalars depending on the
displacement of nodes of the element.

Correspondingly, the Jacobian matrix J (ξ, η) is rewritten
in the summation form of a constant part Jc and Jv (ξ, η)

containing variables ξ, η as follows

J (ξ, η) = Jc + Jv (ξ, η) (10)

In the αFEM, the following “scaled strain” is used

ε̃h (α, ξ, η) = B̃d =
NP∑
I=1

B̃I (x (α, ξ, η))dI

= εh
c + αεh

v (ξ, η) (11)

where α ∈ [0, 1] is a scaling factor, and εh
c , εh

v (ξ, η) are
components of the strain vector εh of the standard FEM in
Eq. (8). In Eq. (11), B̃ is the scaled strain matrix which is
written in the summation form of a constant part Bc and
Bv (ξ, η) containing variables ξ, η as follows

B̃ = Bc + αBv (ξ, η) (12)

Correspondingly, the scaled Jacobian matrix J̃ (α, ξ, η) is
now also “scaled” as follows

J̃ (α, ξ, η) = Jc + αJv (ξ, η) (13)

where Jc and Jv (ξ, η) are components of the Jacobian matrix
J (ξ, η) in Eq. (10). Note again that the scaling is only on the
gradient of the Jacobian matrix.

The final discretized algebraic equation system of the
αFEM has the form of

KαFEMd = f (14)

where KαFEM is the stiffness matrix. In numerical perfor-
mance using the isoparametric elements and Gauss integra-
tion, the entries of scaled stiffness matrix KαFEM

I J become

KαFEM
IJ =

1∫

−1

1∫

−1

B̃T
I (x (α, ξ, η)) DB̃J

× (x (α, ξ, η))

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη

=
M1∑
i=1

M2∑
j=1

B̃T
I

(
x

(
α, ξi , η j

))
DB̃J

× (
x

(
α, ξi , η j

)) ∣∣∣J̃ (
α, ξi , η j

)∣∣∣ Wi W̄ j (15)

and f is the element force vector which is the same to that of
the standard FEM.
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In the αFEM, we will always use full Gauss integration
that is 2 by 2 or G = 4 for quadrilateral elements, and the
solution of the αFEM will change depending on the value of
scaling factor α ∈ [0, 1]. Note that the scaling to the strains
is performed for both the evaluation of stiffness matrix and
for computing the strains after the displacement is obtained.

3 Variational principle for examining the αFEM

In the αFEM, the Galerkin weak form is used with the scaled
strain (11) instead of the consistent strain (8), the variational
consistency needs to be examined. To this end, we start with
the modified Hellinger–Reissner variational principle with
the assumed strain vector ε̃ and displacements u as inde-
pendent field variables [32]:

U (u, ε̃) = −
∫

�

1

2
ε̃T Dε̃d� +

∫

�

(Dε̃)T (∇su)d�

−
∫

�

uT bd� −
∫

�t

uT t̄d� (16)

Performing the variation using the chain rule, one obtains

δU (u, ε̃) = −
∫

�

δε̃T Dε̃d� +
∫

�

δε̃T D (∇su)d�

+
∫

�

ε̃T D (∇sδu)d� −
∫

�

δuT bd�

−
∫

�t

δuT t̄d� = 0 (17)

Substituting the approximations (2), (11) into (17) and
use the scaled Jacobian matrix J̃ (α, ξ, η) in (13) instead the
standard Jacobian matrix J (ξ, η) in calculating the integrals
using isoparametric elements, and using the arbitrary pro-
perty of variation, we obtain

Ktwo−fieldd = f (18)

where Ktwo−field is the assumed stiffness matrix, and f is the
element force vector given by

Ktwo−field
I J = −

1∫

−1

1∫

−1

B̃T
I DB̃J

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη

+ 2

1∫

−1

1∫

−1

B̃T
I DBJ

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη (19)

fI =
∫

�

NT
I (x)bd� +

∫

�t

NT
I (x)t̄d� (20)

Only when the condition

1∫

−1

1∫

−1

B̃T
I DB̃J

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη

=
1∫

−1

1∫

−1

B̃T
I DBJ

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη (21)

is satisfied, from Eq. (19) we then have

Ktwo−field
I J =

1∫

−1

1∫

−1

B̃T
I DB̃J

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη (22)

The αFEM uses directly Eq. (22) to calculate the stiff-
ness matrix regardless whether or not the conditions (21)

and
∣∣∣J̃ (α, ξ, η)

∣∣∣ = |J (ξ, η)| are satisfied. Therefore, the

αFEM may or may not be “variationally consistent”, and
hence its properties need to be examined to prove its stability
and convergence. Note that Eq. (21) is a special case of the
so-call orthogonal condition [37].

The αFEM is some what similar to the SFEM [22,24],
in terms of making use of the discovered fact that “the gra-
dient of the compatible strain field does not have to be kept
exactly and can be properly manipulated”. Such a manipu-
lation and the resulted stress field via the constitute equation
σ = Dε̃ usually do not satisfy the orthogonal condition in
general, and result in a violation of the variational principle,
meaning that the same form of the Galerkin weak form used
for such a manipulated strain field may not be derived from
the Hu-Washizu or modified Hellinger–Reissner principles.
However different from the SFEM, the αFEM gives much
better and simple way to manipulate the strain field by sim-
ply scaling the gradient part of the compatible strain field by
a scaling factor α, and this scaled strain field still satisfies two
criteria for a Galerkin weak form to converge: (1) a compa-
tible displacement filed (in H1 space) has to be assumed; (2)
the constant part of the strain field of the compatible strain
field from the assumed displacement field has to be exactly
captured.

4 Properties of the αFEM

4.1 Variational consistency and energy consistency

Remark 1 When α = 1.0, the αFEM becomes the standard
FEM using full Gauss integration (G = 4). It is variationally
consistent and KαFEM

I J (α=1) = KFEM
I J (G=4).

Remark 2 When α = 0.0, the αFEM becomes the standard
FEM using reduced integration. It is variationally consistent
and KαFEM

I J (α=0) = KFEM
I J (G=1).
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Remark 3 When 0.0 < α < 1.0, we obtain a continuous
form of solutions ranging from the standard FEM using redu-
ced integration to that using full Gauss integration. The
method is not variationally consistent because Eq. (21) can
not be satisfied.

Remark 3 naturally gives rise to a question: is the αFEM
solution reliable when 0.0 < α < 1.0 is used? The following
theorem will provide a positive answer.

Theorem 1 The strain energy function E (α) of the αFEM is
a fourth order function of scaling factor α and always gains
a local extreme value at α = 0.0. This strain energy function
satisfies the following bound

E (α = 1.0) < E (α) < E (α = 0.0) , α ∈ (0, 1) (23)

which implies that the αFEM is energy consistent.

Proof The strain energy function E (α) of the element will
be calculated as follows

E (α) =
1∫

−1

1∫

−1

(
ε̃h (α, ξ, η)

)T
Dε̃h (α, ξ, η)

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη

=
1∫

−1

1∫

−1

(
αεh

v (ξ, η) + εh
c

)T
D

×
(
αεh

v (ξ, η) + εh
c

) ∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη

= α2 Evv + 2αEvc + Ecc (24)

where

Evv =
1∫

−1

1∫

−1

(
εh

v(ξ, η)
)T

Dεh
v(ξ, η)

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη (25)

Evc =
1∫

−1

1∫

−1

(
εh

v (ξ, η)
)T

Dεh
c

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη (26)

Ecc =
1∫

−1

1∫

−1

(
εh

c

)T
Dεh

c

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη (27)

We now examine Evc in detail. First, the determinant of
the Jacobian matrix J̃ (α, ξ, η) is written as follows
∣∣∣J̃ (α, ξ, η)

∣∣∣ = J1 + J2αη + J3αξ + J4α
2ξη (28)

where J1, J2, J3, and J4 are scalars depending on the coor-
dinate of nodes of the element.

Substituting Eqs. (9), (28) into (26) and use the general
form of the material matrix D for the plain strain and plain

stress problems, we obtain

Evc =
1∫

−1

1∫

−1

(
εh

v (ξ, η)
)T

Dεh
c

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη

=
1∫

−1

1∫

−1

{
ηεv1 ξεv2 ξεv1 + ηεv2

}
⎡
⎣D11 D12 0

D21 D22 0
0 0 D33

⎤
⎦

×
⎧⎨
⎩

εc1

εc2

εc3

⎫⎬
⎭

(
J1 + J2αη + J3αξ + J4α

2ξη
)

dξdη

=
1∫

−1

1∫

−1

(η (εv1εc1 D11 + εv1εc2 D21 + εv2εc3 D33)

+ ξ (εv2εc1 D21 + εv2εc2 D22 + εv1εc3 D33))

×
(

J1 + J2αη + J3αξ + J4α
2ξη

)
dξdη

=
1∫

−1

1∫

−1

(ηC1 + ξC2)(J1 + J2αη

+ J3αξ + J4α
2ξη)dξdη

=
1∫

−1

1∫

−1

(
C1 J2αη2 + C2 J3αξ2

)
dξdη

= α
4

3
(C1 J2 + C2 J3) (29)

where

C1 = εv1εc1 D11 + εv1εc2 D21 + εv2εc3 D33

C2 = εv2εc1 D21 + εv2εc2 D22 + εv1εc3 D33 (30)

Note that we used the following results to obtain Eq. (29)

1∫

−1

1∫

−1

ξdξdη =
1∫

−1

1∫

−1

ηdξdη =
1∫

−1

1∫

−1

ξηdξdη

=
1∫

−1

1∫

−1

ξη2dξdη =
1∫

−1

1∫

−1

ξ2ηdξdη =0 (31)

Following the same but lengthy procedure, we obtain

Evv = 4

3
(C3 J1 + C5 J1) + 4

9
J4C4α

2 (32)

Ecc = C6 J1 (33)

where

C3 = ε2
v1 D11 + ε2

v2 D33

C4 = 2εv1εv2 (D21 + D33)

(34)C5 = ε2
v2 D22 + ε2

v1 D33

C6 = 4
(
ε2

c1 D11 + 2εc1εc2 D21 + ε2
c2 D22 + ε2

c3 D33

)
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Substituting Eqs. (29), (32) and (33) into (24), we obtain

E (α) = α2
(

4

3
(C3 J1 + C5 J1) + 4

9
J4C4α

2
)

+ 2αα
4

3
(C1 J2 + C2 J3) + C6 J1

= α4 4

9
J4C4 + α2

(
4

3
(C3 J1 + C5 J1)

+ 8

3
(C1 J2 + C2 J3)

)
+ C6 J1

which has the simple form of

E (α) = α4 F1 + α2 F2 + F3 (35)

where

F1 = 4

9
J4C4;

F2 = 4

3
(C3 J1 + C5 J1) + 8

3
(C1 J2 + C2 J3) ; (36)

F3 = C6 J1

Equation (35) shows that the strain energy function E(α)

is a fourth order function of scaling factor α. Take derivative
of Eq. (35) with respect to scaling factor α, we have

∂ E (α)

∂α
= 4α3 F1 + 2αF2 (37)

which shows that the strain energy function E(α) always
gains a local extreme value at α = 0.0.

So far, the results of the standard displacement FEM shows
that the strain energy using the reduced integration is always
larger than that using the full Gauss integration [17,19] which
implies that

F1 + F2 + F3 = E (α = 1) < E (α = 0) = F3 (38)

Combining Eq. (38) with the Eq. (35), it is easy to see that

E (α = 1) < E (α) < E (α = 0) , α ∈ (0, 1)

which implies that the αFEM is energy consistent. ��
Note that the concept energy consistent which was first

introduced by Liu et al. [24] implies herein that the strain
energy of the αFEM with α ∈ (0, 1) is finite and bounded
from above and below by the strain energies E (α = 0.0) and
E (α = 1.0), respectively.

Theorem 1 states that even when the αFEM with α ∈
(0, 1) is not “variationally consistent” by the definition of
Eq. (21), it produces meaningful results that are energy
consistent and has bound property given in Eq. (23). Theo-
rem 1 also shows that with α ∈ [0, 1], the strain energy of
the αFEM is biggest at α = 0.0, but smallest at α = 1.0,
and we can reduce the overestimation of stiffness matrix of
the standard FEM using the full Gauss integration by using
0.0 ≤ α < 1.0 in the αFEM.

The consistency in energy will ensure the αFEM passes
the standard patch test (see, Sect. 5.2) for all α ∈ [0, 1],
which will further confirm that there is no energy loss for any
linear fields and the αFEM has linear field re-producibility
and hence sufficient to converge to any continuous fields.

4.2 Classification of problems

Depending on boundary conditions, the numerical results of
the αFEM with α = 0.0 (or the standard FEM using reduced
integration) have different properties. Based on these proper-
ties, we can classify the problems in two groups:

• Overestimation problems: the solution of strain energy
obtained using the αFEM with α = 0.0 is an “overesti-
mation” of the exact solution.

• Underestimation problems: the solution of strain energy
obtained using the αFEM with α = 0.0 is an “underesti-
mation” of the exact solution.

Generally, underestimation problems are often significantly
over-determined with excessive displacement constraints.
The numerical stability is therefore ensured at α = 0.0.
On the other hand, overestimation problems are under-
determined with less displacement constraints. The nume-
rical instability will therefore happen at α = 0.0. Note that
the classification of problems into over- or underestimation
is based on the global energy, not any local quantity. Hence,
this classification of problems can be done for any structure.

4.3 Determination of overestimation or underestimation
of the exact solution

Note that to determine the αFEM solution at a specific value
of α being an underestimation or overestimation of the exact
solution is straightforward. All we need is to compute the
strain energy E (α) for two coarse meshes of different densi-
ties. If E (α) of the finer mesh is larger than that of the coarser
mesh, the αFEM solution (in strain energy) is an underesti-
mation of the exact solution. Vice versa, if E (α) of the finer
mesh is smaller than that of the coarser mesh, the αFEM
solution (in strain energy) is an overestimation of the exact
solution.

Note also the fact that, the solution of the αFEM with
α = 1.0 (or FEM using full Gauss integration) is always
an underestimation of that using the αFEM with α = 0.0
and the exact solution [17,19]. Combining these results with
Remarks 1–3 and Theorem 1, we have two following impor-
tant theorems on the producibility of the exact solution by
the αFEM.
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4.4 Producibility of the exact solution by the αFEM

Theorem 2 If the strain energy of the αFEM solution at
α = 0.0 is an overestimation of the exact solution, there
exists a value of αexact such that

E (αexact) = Eexact (39)

which shows that the strain energy of the αFEM at α = αexact

is equal to the strain energy of the exact solution.

Proof From the Remark 3 and Theorem 1, we see that the
energy diagram of the αFEM is a continuous function from
α = 0.0 to α = 1.0. Because the strain energy of the αFEM at
α = 0.0 is an overestimation of the exact solution, while the
strain energy of the αFEM at α = 1.0 is an underestimation
of the exact solution, therefore there exists a value of αexact

such that

E (αexact) = Eexact

which shows that the strain energy of the αFEM at α = αexact

is equal to the strain energy of the exact solution. ��

4.5 Exact-α approach

Theorem 2 provides the foundation for us to devise an exact-α
approach that can be used to find the exact solution using the
αFEM for overestimation problems. The exact-α approach
works as follows.

a. Use two coarse meshes of same aspect ratio to compute
two E(α)-α curves.

b. Obtain the intersection point of these two curves to deter-
mine αexact and E (αexact) that is the exact solution of
strain energy of the problem (see Sect. 4.6).

c. Create a fine mesh of the same aspect ratio, and using the
αFEM with αexact to compute the displacement solution.

d. Use the displacement solution to compute the strains and
stresses.

Examples of application of the exact-α approach are pre-
sented in Sect. 6.

4.6 Procedure to determine αexact

The above results show that we can use only two coarse
meshes of the same aspect ratio to find the solution of which
the strain energy is the exact solution. The general procedure
to determineαexact is now presented as follows. For one mesh,
the strain energy curve E (α) can be determined using three
values of α ∈ [0, 1], and using Eq. (35) we have

E (α1) = α4
1 F (1)

1 + α2
1 F (1)

2 + F (1)
3

E (α2) = α4
2 F (1)

1 + α2
2 F (1)

2 + F (1)
3

E (α3) = α4
3 F (1)

1 + α2
3 F (1)

2 + F (1)
3

The above equation set can be solved for F (1)
1 , F (1)

2 and

F (1)
3 , and we then have

E (α) = α4 F (1)
1 + α2 F (1)

2 + F (1)
3 (40)

For another mesh of the same aspect ratio, we can also
obtain

E (α) = α4 F (2)
1 + α2 F (2)

2 + F (2)
3 (41)

Finally, αexact ∈ (0, 1) is obtained by finding the roots for
the following equation

α4
(

F (1)
1 − F (2)

1

)
+ α2

(
F (1)

2 − F (2)
2

)
+ F (1)

3 − F (2)
3 = 0

(42)

4.7 Zero-α approach

For underestimation problems, we propose a “zero-α
approach” that offeres the best possible solution for such
problems in energy norm.

Theorem 3 If the strain energy of the αFEM solution at
α = 0.0 is an “underestimation” of the exact solution, the
strain energy of the αFEM at α = 0.0 is closest to the exact
strain energy.

Proof Similar to Theorem 2, from the Remark 3 and
Theorem 1, we see that the energy diagram of the αFEM
is a continuous function from α = 0.0 to α = 1.0 and the
strain energy satisfies

E (α = 1.0) < E (α) < E (α = 0.0) , α ∈ (0, 1)

which shows that the strain energy E (α) of the αFEM with
α ∈ (0, 1) is bounded from above by E (α = 0.0). Because
both the strain energies of the αFEM at α = 0.0 and α = 1.0
are underestimations of the exact solution, the strain energy
of the αFEM at α = 0.0 is therefore closest to the exact strain
energy. ��

Theorem 3 provides the foundation for us to use α =
0.0 to find the possible best solution in the strain energy for
underestimation problems for any discretizations of problem
domain. Remind that for the underestimation problems, the
numerical stability of the solution at α = 0.0 is ensured due
to excessive displacement constraints.

4.8 General procedure of the αFEM for a practical problem

Theorems 1–3 ensures that the αFEM can provide a bounded
solution (in energy) that is closest to the exact solution. It is
also always better than the standard FEM solution. We now
present a general approach of using the αFEM to solve a
practical engineering problem:

123



376 Comput Mech (2009) 43:369–391

a. Use two coarse meshes and α = 0.0 to determine the
type of the problem: over- or underestimation problem
(see, Sect. 4.3);

b. For overestimation problems, use the exact-α approach;
for underestimation problems, use the zero-α approach.

Note that, the strain energy is a positive scalar and its rela-
tion with respect to α can be found easily. The displacement is
a vector of real numbers, and it relates to α through the linear
algebra equation system K(α)d = f which can not be expres-
sed explicitly. However, it is always ensured that nothing will
go wrong for the displacements for any α ∈ (0, 1) because
of the well-conditioned K(α), and the bounded 1

2 dT K(α)d.
Note also the solution which is “best” in energy does not

guarantee best in displacement. This is common to any nume-
rical methods based on energy principles. The present αFEM
is not meant to changes this fact. Our numerical example
shows that when the system energy is at the best status, the
displacements are generally of good (not the best) accuracy,
and always converge (may not be monotonically).

5 Numerical implementation and examination

5.1 Procedure of the αFEM

The numerical procedure for the αFEM is almost similar to
that for the standard displacement compatible FEM. We only
change a little to calculate the scaled gradient matrix and the
scaled Jacobian matrix by adding a scaling factor α to the
components of standard strain gradient and Jacobian matrices
containing coordinates ξ, η in the isoparametric elements. In
the αFEM, we always use full Gauss integration. The change
of the scaling factor α from 0.0 to 1.0 gives the different
solutions that will be examined in details.

5.2 Standard patch test: linear reproducibility/convergence

Two types of discretization are used, as shown in Fig. 3:
one with 10 × 10 regular elements and the other with irre-
gular interior nodes whose coordinates are generated in the

following fashion

x ′ = x + 
x · rc · αir

y′ = y + 
y · rc · αir (43)

where 
x and 
y are initial regular element sizes in x−
and y− directions, respectively. rc is a computer-generated
random number between −1.0 and 1.0 and αir is a prescribed
irregularity factor whose value is chosen between 0.0 and 0.3.

The following error norm in displacements is used to exa-
mine the computed results.

ed =
∑ndof

i=1

∣∣ui − uh
i

∣∣
∑ndof

i=1 |ui |
× 100% (44)

where ui is the exact solution and uh
i is the numerical solu-

tion.
It is found that the αFEM can pass the standard patch test

within machine precision regardless of the value of α ∈ [0, 1]
and αir used as shown in Table 1. There is no accuracy loss
due to the choice of α value.

5.3 Stability analysis

In this sub-section, an intensive eigenvalue analysis is
conducted to investigate numerically the properties of the
proposed αFEM. The value of α will vary from 0.0 to 1.0.
In particular, we also consider the results at a very small α,
for example α = 0.001, to compare these results with those
at α = 0.0. First, a free vibration analysis using the single
value decomposition technique of a free single distorted qua-
drilateral element with total of 8 degrees of freedom (DOFs)
as shown in Fig. 1 is conducted. Tables 2 and 3 show the
eigenvalues and the condition number of stiffness matrix K.
The results in Table 2 show that

• There are at least 3 zero eigenvalues correspondingly to
three rigid movements of the element.

• When α = 0.0, two additional zero-energy modes are
observed as expected. These two modes correspond to
the well known two “hour-glass” modes which are the
root of instability in the numerical results.

• As long as 0.0 < α ≤ 1.0, there will be no “spurious”
modes, which confirms that theαFEM will be stable when
0.0 < α ≤ 1.0.

Table 1 Displacement error norm ed (%)

α = 0.0 (FEM(G=1)) α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0 (FEM(G=4))

αir = 0.0 (regular mesh) 2.89 e−12 2.55 e−12 2.85 e−12 2.07 e−12 2.42 e−12 2.18 e−12

αir = 0.1 2.80 e−12 2.29 e−12 2.42 e−12 2.50 e−12 1.89 e−12 1.62 e−12

αir = 0.2 2.66 e−12 2.32 e−12 1.69 e−12 2.51 e−12 2.02 e−12 2.18 e−12

αir = 0.3 2.68 e−12 2.68 e−12 2.84 e−12 1.94 e−12 1.68 e−12 1.93 e−12
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Table 2 Eigenvalues of a free solid using one element (E = 3.0 × 107, ν = 0.3)

Eigen values α = 0.0 (FEM(G=1)) α = 0.001 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0 (FEM(G=4))

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0.167 e+2 0.067 e+7 0.266 e+7 0.593 e+7 1.025 e+7 1.471 e+7

5 0 0.196 e+2 0.078 e+7 0.311 e+7 0.691 e+7 1.182 e+7 1.659 e+7

6 2.286 e+7 2.286 e+7 2.292 e+7 2.313 e+7 2.361 e+7 2.473 e+7 2.753 e+7

7 2.317 e+7 2.317 e+7 2.323 e+7 2.343 e+7 2.388 e+7 2.492 e+7 2.782 e+7

8 5.825 e+7 5.825 e+7 5.830 e+7 5.846 e+7 5.878 e+7 5.933 e+7 6.035 e+7

Table 3 Condition number of stiffness matrix K of a free solid using one element (E = 3.0 × 107, ν = 0.3)

α = 0.0 (FEM(G=1)) α = 0.001 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0 (FEM(G = 4))

Condition number 5.17 e+33 4.05 e+17 1.62 e+17 3.45 e+16 5.38 e+16 5.83 e+17 4.11 e+17

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 1 A distorted quadrilateral element

As shown in Table 3, the condition number of the stiffness
matrix K is very big at α = 0.0, and drastically decreases to
much smaller number that are comparable to that at α = 1.0
by using any α > 0.

Next, we perform a similar vibration analysis for a solid
using one distorted element with 3 fixed DOFs as shown in
Fig. 2. The results of eigenvalues and condition numbers of
matrix K are presented in Tables 4 and 5, respectively. The
results again show that using any α > 0, we can eliminate
the spurious zero-energy modes that are observed at α = 0.0
(shown in Table 4) and reduce sharply the condition number
of matrix K which is very big at α = 0.0 to much smaller
numbers which are comparable with that at α = 1.0 (shown
in Table 5). In addition, as shown in Table 4, using α = 0.001
we will get

−0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 2 A single distorted element with 3 fixed DOFs

• Three 6th, 7th, 8th non-zero eigenvalues that are same to
those of the case α = 0.0 and

• Two additional 4th, 5th non-zero eigenvalues which
replace two spurious zero eigenvalues of α = 0.0. These
two additional non-zero eigenvalues are larger than 1.0
and very small compared to three above 6th, 7th, 8th non-
zero eigenvalues.

The above results imply two important findings for the
overestimation problems: (1) there existes a small αsta

1 , when
αsta

1 ≤ α ≤ 1 the numerical stability (no hour-glass locking)
of the present αFEM is always ensured; (2) there existes a
small αsta

2 , when αsta
1 ≤ α ≤ αsta

2 the solutions in the strain
energy obtained by the present αFEM are almost the same
as those of the FEM using the reduced integration.
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Table 4 Eigenvalues of a solid with 3 DOFs fixed using one element (E = 3.0 × 107, ν = 0.3)

Eigen values α = 0.0 (FEM(G = 1)) α = 0.001 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0 (FEM(G = 4))

1 0.0 1.0 1.0 1.0 1.0 1.0 1.0

2 0.0 1.0 1.0 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4 1.0 1.895 0.008 e+7 0.030 e+7 0.065 e+7 0.110 e+7 0.161 e+7

5 1.0 9.508 0.038 e+7 0.153 e+7 0.345 e+7 0.613 e+7 0.943 e+7

6 1.159 e+7 1.159 e+7 1.168 e+7 1.198 e+7 1.252 e+7 1.332 e+7 1.404 e+7

7 1.445 e+7 1.445 e+7 1.446 e+7 1.448 e+7 1.453 e+7 1.469 e+7 1.561 e+7

8 3.995 e+7 3.995 e+7 3.996 e+7 4.001 e+7 4.010 e+7 4.024 e+7 4.043 e+7

Table 5 Condition number of stiffness matrix K of a solid with 3 DOFs fixed using one element (E = 3.0 × 107, ν = 0.3)

α = 0.0 (FEM(G = 1)) α = 0.001 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0 (FEM(G = 4))

Condition number 1.45 e+24 1.82 e+8 1.80 e+8 1.80 e+8 1.80 e+8 1.81 e+8 1.81 e+8
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b) Irregular elements

Fig. 3 Domain discretization of a square patch using 4-node quadrila-
teral elements a Regular square elements; b Irregular square elements
(αir = 0.3)

The question is now how small the αsta
1 and αsta

2 should
be. In order to answer this question in a general manner, we
conduct a more detailed study on the two above-mentioned
eigenvalue problems, using only very small values of α

varying from α = 1.0e − 05 to α = 1.0e − 01. The most
suitable values of αsta

1 and αsta
2 should ensure the eigenva-

lues analysises to satisfy three following conditions: first,
the condition number of matrix K is comparable to that at
α = 1.0; second, two additional non-zero eigenvalues which
replace spurious zero eigenvalues at α = 0.0 should be lar-
ger than 1 and as small as possible compared to the others
non-zero eigenvalues; third, three non-zero 6th, 7th, 8th

eigenvalues should be identical to those at α = 0.0. These
three conditions will ensure that the stiffness matrix has a
good condition number (hence numerical stability) and the
results at αsta

1 ≤ α ≤ αsta
2 in the strain energy are almost the

same with those of the FEM using the reduced integration.
Tables 6, 7, 8 and 9 show the eigenvalues and the condition
number of stiffness matrix K versus the various values of α.
The results show that αsta

1 = 1.0e − 03 and αsta
2 = 1.0e − 02

are the most suitable values of α which satisfy these three
conditions.

5.4 αFEM for incompressible materials: small-α approach

Volumetric locking tends to appear when the Poisson’s ratio
approaches to 1/2. The application of the reduced integra-
tion of the standard FEM can avoid such locking. However
using the reduced integration in the overestimation problems
results in the zero-energy modes or numerical instability,
which limits its applications in practice. Using the αFEM
with αsta

1 ≤ α ≤ αsta
2 as presented in Sect. 5.3, we can elimi-

nate this numerical instability. However, the results obtained
for αsta

1 and αsta
2 are for compressible material. It is therefore

necessary to conduct again the eigenvalue analysis to find the
new stable range

[
αvol

1 , αvol
2

]
for the nearly incompressible

materials with Poisson’s ratio changed from ν = 0.499 to
ν = 0.499999. For the new eigenvalue analysis, the small
values of α are changed from α = (0.5 − ν) e − 02 to
α = (0.5 − ν) e +02, where ν is the Poisson ratio. The most
suitable values of αvol

1 and αvol
2 should also ensure the eigen-

values analysises satisfying the three conditions presented in
Sect. 5.3.

Tables 10, 11, 12, 13 and 14 show the eigenvalues and the
condition number of stiffness matrix K versus the various
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Table 6 Eigenvalues of a free solid using one element (E = 3.0 × 107, ν = 0.3)

Eigen values α = 0.0 (FEM(G = 1)) α = 1e − 05 α = 1e − 04 α = 1e − 03 α = 1e − 02 α = 1e − 01 α = 1.0 (FEM(G = 4))

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.167 e−02 0.167 0.167 e+2 0.167 e+4 0.167 e+6 1.471 e+7

5 0.0 0.196 e−02 0.196 0.196 e+2 0.196 e+4 0.196 e+6 1.659 e+7

6 2.286 e+7 2.286 e+7 2.286 e+7 2.286 e+7 2.286 e+7 2.287 e+7 2.753 e+7

7 2.317 e+7 2.317 e+7 2.317 e+7 2.317 e+7 2.317 e+7 2.319 e+7 2.782 e+7

8 5.825 e+7 5.825 e+7 5.825 e+7 5.825 e+7 5.825 e+7 5.826 e+7 6.035 e+7

Table 7 Condition number of stiffness matrix Kof a free solid using one element (E = 3.0 × 107, ν = 0.3)

α = 0.0 (FEM(G = 1)) α = 1e − 05 α = 1e − 04 α = 1e − 03 α = 1e − 02 α = 1e − 01 α = 1.0 (FEM(G = 4))

Condition number 5.174 e+33 5.07 e+17 1.12 e+17 4.05 e+17 0.92 e+17 2.71 e+17 4.11 e+17

Table 8 Eigenvalues of a solid using one element with 3 DOFs fixed (E = 3.0 × 107, ν = 0.3)

Eigen values α = 0.0 (FEM(G = 1)) α = 1e − 05 α = 1e − 04 α = 1e − 03 α = 1e − 02 α = 1e − 01 α = 1.0 (FEM(G = 4))

1 0.0 1.0 1.0 1.0 1.0 1.0 1.0

2 0.0 1.0 1.0 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4 1.0 0.190 e−03 0.190 e−1 0.190 e+1 0.190 e+3 0.189 e+5 0.161 e+7

5 1.0 0.951 e−03 0.951 e−1 0.951 e+1 0.951 e+3 0.951 e+5 0.943 e+7

6 1.159 e+7 1.159 e+7 1.159 e+7 1.159 e+7 1.159 e+7 1.161 e+7 1.404 e+7

7 1.445 e+7 1.445 e+7 1.445 e+7 1.445 e+7 1.445 e+7 1.445 e+7 1.561 e+7

8 3.995 e+7 3.995 e+7 3.995 e+7 3.995 e+7 3.995 e+7 3.995 e+7 4.043 e+7

Table 9 Condition number of stiffness matrix K of a solid using one element with 3 DOFs fixed (E = 3.0 × 107, ν = 0.3)

α = 0.0 (FEM(G = 1)) α = 1e − 05 α = 1e − 04 α = 1e − 03 α = 1e − 02 α = 1e − 01 α = 1.0 (FEM(G = 4))

Condition number 1.45 e+24 2.50 e+11 2.51 e+9 1.82 e+8 1.80 e+8 1.80 e+8 1.81 e+8

values of α of the free solid using one element as shown in
Fig. 1. The results show that αvol

1 = (0.5 − ν) and αvol
2 =

(0.5 − ν) e + 01 are the most suitable values of α for the
nearly incompressible materials.

The results of αvol
1 and αvol

2 provides the foundation for us
to devise a small-α approach that is used to avoid the volu-
metric locking for the overestimation problems by using any
αvol

1 ≤ α ≤ αvol
2 . Note that for the underestimation problems,

the numerical stability of the solution at α = 0.0 is ensured
due to excessive displacement constraints. It is therefore both
the zero-α approach or the small-α approach can be used to
avoid the volumetric locking for underestimation problems.

Note that, for this kind of problems, we have to give up on
the “exact” solution, and only focus on solving the volumetric
locking.

6 Numerical examples

In this section, four numerical examples will be analyzed
using the αFEM. The two first examples are used to illustrate
the important properties of the αFEM when the strain energy
of the solution at α = 0.0 is an overestimation of the exact
solution, while two examples are for the case when the strain
energy of the solution at α = 0.0 is an underestimation of
the exact solution.

In order to study the convergence rate of the present
method, two norms are used here, i.e., displacement error
norm and energy error norm. The displacement error norm
is given by Eq. (44) and the energy error norm is defined by

ee (α) = |E (α) − Eexact|½ (45)
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Table 10 Eigenvalues of a free solid using one element (E = 3.0 × 107, ν = 0.499999)

Eigen values 1 2 3 4 5 6 7 8

α = 0.0 0 0 0 0 0 1.99 e+07 2.01 e+07 1.00 e+13

α = (0.5 − ν) e − 02 (or α = 1e-08) 0 0 0 0 0 1.99 e+07 2.01 e+07 1.00 e+13

α = (0.5 − ν) e − 01 (or α = 1e-07) 0 0 0 0 0 1.99 e+07 2.01 e+07 1.00 e+13

α = (0.5 − ν) (or α = 1e − 06) 0 0 0 1.50 2.00 1.99 e+07 2.01 e+07 1.00 e+13

α = (0.5 − ν) e + 01 (or α = 1e − 05) 0 0 0 1.54 e+02 1.96 e+02 1.99 e+07 2.01 e+07 1.00 e+13

α = (0.5 − ν) e + 02 (or α = 1e − 04) 0 0 0 1.54 e+04 1.96 e+04 1.99 e+07 2.01 e+07 1.00 e+13

α = 1.0 0 0 0 1.84 e+07 1.87 e+07 1.83 e+12 2.11 e+12 1.02 e+13

Table 11 Eigenvalues of a free solid using one element (E = 3.0 × 107, ν = 0.49999)

Eigen values 1 2 3 4 5 6 7 8

α = 0.0 0 0 0 0 0 1.99 e+07 2.01 e+07 1.00 e+12

α = (0.5 − ν) e − 02 (or α = 1e − 07) 0 0 0 0 0 1.99 e+07 2.01 e+07 1.00 e+12

α = (0.5 − ν) e − 01 (or α = 1e − 06) 0 0 0 0.15 0.20 1.99 e+07 2.01 e+07 1.00 e+12

α = (0.5 − ν) (or α = 1e − 05) 0 0 0 1.54 e+01 1.96 e+01 1.99 e+07 2.01 e+07 1.00 e+12

α = (0.5 − ν) e + 01 (or α = 1e − 04) 0 0 0 1.54 e+03 1.96 e+03 1.99 e+07 2.01 e+07 1.00 e+12

α = (0.5 − ν) e + 02 (or α = 1e − 03) 0 0 0 1.54 e+05 1.95 e+05 1.99 e+07 2.01 e+07 1.00 e+12

α = 1.0 0 0 0 1.84 e+07 1.87 e+07 1.83 e+11 2.11 e+11 1.02 e+12

Table 12 Eigenvalues of a free solid using one element (E = 3.0 × 107, ν = 0.4999)

Eigen values 1 2 3 4 5 6 7 8

α = 0.0 0 0 0 0 0 1.99 e+07 2.01 e+07 1.00 e+11

α = (0.5 − ν) e − 02 (or α = 1e − 06) 0 0 0 0.015 0.020 1.99 e+07 2.01 e+07 1.00 e+11

α = (0.5 − ν) e − 01 (or α = 1e − 05) 0 0 0 1.54 1.96 1.99 e+07 2.01 e+07 1.00 e+11

α = (0.5 − ν) (or α = 1e − 04) 0 0 0 1.54 e+02 1.96 e+02 1.99 e+07 2.01 e+07 1.00 e+11

α = (0.5 − ν) e + 01 (or α = 1e − 03) 0 0 0 1.54 e+04 1.96 e+04 1.99 e+07 2.01 e+07 1.00 e+11

α = (0.5 − ν) e + 02 (or α = 1e − 02) 0 0 0 1.53 e+06 1.94 e+06 2.01 e+07 2.02 e+07 1.00 e+11

α = 1.0 0 0 0 1.84 e+07 1.87 e+07 1.83 e+10 2.11 e+10 1.02 e+11

Table 13 Eigenvalues of a free solid using one element (E = 3.0 × 107, ν = 0.499)

Eigen values 1 2 3 4 5 6 7 8

α = 0.0 0 0 0 0 0 1.99 e+07 2.01 e+07 1.00 e+10

α = (0.5 − ν) e − 02 (or α = 1e − 05) 0 0 0 0.155 0.196 1.99 e+07 2.01 e+07 1.00 e+10

α = (0.5 − ν) e − 01 (or α = 1e − 04) 0 0 0 1.55 e+01 1.96 e+01 1.99 e+07 2.01 e+07 1.00 e+10

α = (0.5 − ν) (or α = 1e − 03) 0 0 0 1.55 e+03 1.96 e+03 1.99 e+07 2.01 e+07 1.00 e+10

α = (0.5 − ν) e + 01 (or α = 1e − 02) 0 0 0 1.55 e+05 1.96 e+05 1.99 e+07 2.01 e+07 1.00 e+10

α = (0.5 − ν) e + 02 (or α = 1e − 01) 0 0 0 1.30 e+07 1.53 e+07 2.39 e+07 2.58 e+07 1.01 e+10

α = 1.0 0 0 0 1.84 e+07 1.87 e+07 1.84 e+09 2.12 e+09 1.02 e+10
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Table 14 Condition number of
stiffness matrix K of a free solid
using one element
(E = 3.0 × 107)

ν = 0.499 ν = 0.4999 ν = 0.49999 ν = 0.499999

α = 0.0 2.805 e+33 3.775 e+33 1.145 e+33 8.839 e+32

α = (0.5 − ν) e − 02 1.210 e+17 5.711 e+16 7.827 e+16 9.954 e+22

α = (0.5 − ν) e − 01 9.364 e+16 6.429 e+17 2.205 e+17 5.701 e+17

α = (0.5 − ν) 2.411 e+17 5.363 e+16 1.739 e+17 1.887 e+17

α = (0.5 − ν) e + 01 3.297 e+17 2.246 e+17 2.338 e+17 1.261 e+17

α = (0.5 − ν) e + 02 1.565 e+17 5.081 e+16 1.521 e+17 2.600 e+17

α = 1.0 2.400 e+17 1.994 e+17 3.875 e+17 2.226 e+17

Fig. 4 A thick cylindrical pipe
subjected to an inner pressure
and its quarter model

where the total strain energy of numerical solution E (α)

and the total strain energy of exact solution Eexact is calcu-
lated by

E (α) = 1

2

nel∑
i=1

1∫

−1

1∫

−1

(
ε̃h

i (α, ξ, η)
)T

D ε̃h
i

× (α, ξ, η)

∣∣∣J̃ (α, ξ, η)

∣∣∣ dξdη (46)

Eexact = 1

2
lim

nel→∞

nel∑
i=1

∫

�i

εT
i D εi d�

= 1

2
lim

nel→∞

nel∑
i=1

1∫

−1

1∫

−1

εT
i D εi |J (ξ, η)| d� (47)

where nel is the total number of element of the problem,
εi and ε̃h

i are the strain of exact solution and the strain of
numerical solution of the i th element, respectively. In actual
computation using Eq. (47), we will use a very fine mesh
(nel → ∞) to calculate the exact strain energy Eexact.

6.1 A cylindrical pipe subjected to an inner pressure:
exact-α approach

Figure 4 shows a thick cylindrical pipe, with internal radius
a = 0.1 m, external radius b = 0.2 m, subjected to an internal

pressure p = 6 kN/m2. Because of the axi-symmetric cha-
racteristic of the problem, we only calculate for one quarter
of cylinder as shown in Fig. 4. Figure 5 gives the discreti-
zation of the domain using 4-node quadrilateral elements.
Plane strain condition is considered and Young’s modulus
E = 21000 kN/m2, Poisson’s ratio ν = 0.3. Symmetric
conditions are imposed on the left and bottom edges, and
outer boundary is traction free. The exact solution for the
stress components is [39]

σr (r) = a2 p

b2 − a2

(
1 − b2

r2

)
;

σϕ (r) = a2 p

b2 − a2

(
1 + b2

r2

)
; (48)

σrϕ = 0

while the radial and tangential exact displacements are given
by

ur (r) = (1 + ν) a2 p

E
(
b2 − a2

)
{
(1 − 2ν) r + b2

r

}
; uϕ = 0 (49)

where (r, ϕ) are the polar coordinates and α is measured
counter-clockwise from the positive x-axis.

Table 15 shows, respectively, the results of condition num-
ber, strain energy, error norms of displacement and energy
using the mesh (4 × 8) for α ∈ [0, 1]. The results show
that at α = 0.0 the hour-glass phenomenon or zero-energy
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Fig. 5 Discretization of the domain using 4-node quadrilateral
elements

modes appear as shown in Fig. 6. The stiffness matrix with
the boundary conditions imposed is nearly singular. As a
result, the condition number and displacement error norm are
very big compared to those of other values of α. This pro-
blem can be easily overcome by using α ≥ αsta

1 = 1e − 03
which show that the condition number decreases sharply to
the value which is comparable to α = 1.0 (standard FEM
with full integration). As a result, the hour-glass phenome-
non and zero-energy modes disappear as shown in Fig. 7 at
α = αsta

1 and displacement error norm also decreases sharply
to the value which is comparable to α = 1.0. These properties
are also similar for meshes (6 × 12) and (8 × 16).
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Fig. 6 Hour-glass phenomenon or zero-energy modes appear
at α = 0.0 (mesh 4 × 8)

We now use the exact-α approach to find the exact solu-
tion. Figs. 8, 9 and 10 show, respectively, the strain energy,
the error norms of energy and displacement of the cylindri-
cal pipe using three meshes (4 × 8), (6 × 12) and (8 × 16)

for α ∈ [0, 1]. Figure 8 shows that the αFEM solution (in
strain energy) at α = 0.0 is an overestimation of the exact
solution, because the strain energy E (α = 0.0) of a fine
mesh is smaller than that of a coarse mesh. As an expec-
ted result from Theorem 2, there exists a value of αexact such
that E (αexact) = Eexact for each mesh used. The results in
Fig. 8 show that the values of αexact ≈ 0.7065 of three meshes
used are almost coincided at the exact energy Eexact (obtai-
ned using a fine mesh of 50×100), and in Figs. 9 and 10, both

Table 15 Condition number, strain energy, error norms of displacement and energy (mesh 4 × 8 - Exact strain energy = 0.2567e−04)

α Condition Strain Displacement error Energy error Remarks
number of K energy* 1.0e−04 norm (%) norm* 1.0e−03

0.0 (FEM(G = 1)) 1.111 e+18 0.258369965 35.708734 0.4084384 Hour-glass locking

1e−04 0. 874 e+09 0.258369965 0.645454 0.4084384 Less well conditioned

1e−03 0.874 e+07 0.258369961 0.645453 0.4084379 Locking free

(well-conditioned)

1e−02 0.601 e+07 0.258369629 0.6453 0.4083973 //

0.1 0.594 e+07 0.25833 0.6338 0.4043 //

0.2 0.589 e+07 0.25823 0.5990 0.3917 //

0.3 0.584 e+07 0.2581 0.5411 0.3697 //

0.4 0.578 e+07 0.2578 0.4601 0.3366 //

0.5 0.570 e+07 0.2575 0.3561 0.2885 //

0.6 0.561 e+07 0.2572 0.2293 0.2159 //

0.7 0.550 e+07 0.2567 0.0798 0.0584 //

0.8 0.538 e+07 0.2562 0.0921 0.2151 //

0.9 0.526 e+07 0.2557 0.2863 0.3199 //

1.0 (FEM(G = 4)) 0.514 e+07 0.2551 0.5024 0.4060 //
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Fig. 7 Hour-glass phenomenon or zero-energy modes disappear at
α = 0.001(mesh 4 × 8)
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Fig. 8 Strain energy of the cylindrical pipe subjected to an inner pres-
sure

error norms of displacement and energy gain the minimum
values at αexact ≈ 0.7065.

Note that the meshes (4 × 8), (6 × 12) and (8 × 16) used
in the computation have the same aspect ratio, which is 1/2,
between the number of elements along the radius-direction
and those along the tangent-direction. This ensures the set of
three strain energy curves to intersect each other at a common
point αexact. If we use another set of three other meshes of
a different aspect ratio, for example (4 × 6), (6 × 9) and
(8 × 12) which have the same aspect ratio of 2/3, the set of
strain energy curves of these three meshes will intersect each
other at another intersection, and αexact will have different
value as shown in Fig. 11.

Figures 12 and 13 show the convergence rates of error
norms of energy and displacement at values of α ∈ {1e−03,
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Fig. 9 Energy error norm of the cylindrical pipe subjected to an inner
pressure
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Fig. 10 Displacement error norm (%) of the cylindrical pipe subjected
to an inner pressure

αexact, 1.0}. The results show that the error norms of energy
and displacement at αexact ≈ 0.7065 are much more accurate
than those at αsta

1 = 1e − 03 and α = 1.0. In particular, the
error norms of energy and displacement at αexact ≈ 0.7065
using the coarsest mesh are also much more accurate than
those at αsta

1 = 1e − 03 and α = 1.0 using the finest mesh.
The convergence rate of displacement is always approxima-
ted 2.0 for all three values of α as shown in Fig. 13. The
convergence rates of the energy error norm are approxima-
ted 1.0 at αsta

1 = 1e − 03 and α = 1.0, but it is almost zero
at αexact ≈ 0.7065 as shown in Fig. 12. This shows that at
αexact, the strain energy computed using the αFEM is the
nearly exact value that is not mesh dependent and can not be
improved further by mesh refinement.
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Fig. 11 Strain energy of the cylindrical pipe subjected to an inner pres-
sure
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Fig. 12 The convergence rate of energy error norm at the values of
α ∈ {0.001, αexact, 1.0}

Figure 14 shows the strain energy for α ∈ [−70, 70] and
α ∈ [−1, 1] obtained using three meshes 4 × 8, 6 × 12 and
8×16. The results verify clearly that the strain energy of the
αFEM is a fourth order function of α and there exists a local
extreme at α = 0.0. Three diagrams intersect each other at
two common points inside of [−1, 1] where E = Eexact.
For this problem, the αexact can be also determined using the
procedure given in Sect. 4.6.

6.2 αFEM for volumetric locking—problem I (small-α
approach)

Next, we will use the αFEM to deal with the problems with
nearly incompressible material. The same example problem
defined in Sect. 6.1 is used, and all the input data are kept
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Fig. 13 The convergence rate of displacement error norm at the values
of α ∈ {0.001, αexact, 1}

unchanged, except ν is changed from 0.499 to 0.499999.
Because this is an overestimation problem, the small-α
approach with αvol

1 = (0.5 − ν) and αvol
2 = (0.5 − ν) e +01

is used to calculate. The results are also compared with those
of other values of α.

Tables 16, 17 and 18 show, respectively, the results of dis-
placement error norm, strain energy and condition number
K for the mesh (4 × 8). The results show that at α = 0.0 the
hour-glass phenomenon appears, and the condition number
and displacement error norm are very big compared to those
of other values of α. At α = 1.0, the volumetric locking phe-
nomenon appears. Strain energy is much less than the exact
strain energy and displacement error norm increase drasti-
cally. At α = (0.5 − ν) e−02 and α = (0.5 − ν) e−01, less
well conditioned phenomenon appears and increases when
ν approaches closer to 0.5. When the small-α approach with
αvol

1 = (0.5 − ν) and αvol
2 = (0.5 − ν) e + 01 is used, the

results become very good. There are neither ill-conditioning,
nor volumetric locking. It therefore verifies that the small-α
approach with αvol

1 ≤ α ≤ αvol
2 can avoid the volumetric

locking and ensure the numerical stability for the overesti-
mation problems.

6.3 Cook’s membrane: exact-α approach

This is also a widely used benchmark problem: a clamped
tapered panel subjected to an in-plane shearing load resulting
in deformation dominated by a bending response, shown in
Fig. 15, known Cook’s membrane problem [12]. The para-
meters used are Young’s modulus E = 1, Poisson’s ratio
v = 1/3. The exact solution of the problem is unknown.
Under plane stress conditions, the reference value of the ver-
tical displacement at center tip section is 23.9642 [14] and the
reference value of the strain energy is 12.015 [29]. Use the
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Fig. 14 The strain energy
obtained using three meshes
4 × 8, 6 × 12 and 8 × 16 a
α ∈ [−70, 70]; bα ∈ [−1, 1]
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Table 16 Displacement error norm (%) (mesh 4 × 8)

ν = 0.499 ν = 0.4999 ν = 0.49999 ν = 0.499999 Remarks

α = 0.0 185.41 159.84 165.25 187.84 Hour-glass locking

α = (0.5 − ν) e − 02 0.645 0.645 0.652 24.182 Less well conditioned

α = (0.5 − ν) e − 01 0.645 0.645 0.645 0.642 Locking free

α = (0.5 − ν) 0.645 0.645 0.645 0.645 //

α = (0.5 − ν) e + 01 0.630 0.644 0.645 0.645 //

α = (0.5 − ν) e + 02 0.922 0.487 0.630 0.644 //

α = 1.0 61.05 94.01 99.37 99.94 Volumetric locking

Table 17 Energy strain (∗ e − 05)(mesh 4 × 8)

ν = 0.499 ν = 0.4999 ν = 0.49999 ν = 0.499999 Remarks

α = 0.0 2.7097 2.7101 2.7102 2.7102

α = (0.5 − ν) e − 02 2.7097 2.7101 2.7102 2.7102

α = (0.5 − ν) e − 01 2.7097 2.7101 2.7102 2.7102

α = (0.5 − ν) 2.7097 2.7101 2.7102 2.7102

α = (0.5 − ν) e + 01 2.7093 2.7101 2.7102 2.7102

α = (0.5 − ν) e + 02 2.6675 2.7059 2.7097 2.7101

α = 1.0 1.0475 0.1612 0.0170 0.0017 Volumetric locking

Exact energy 2.7093 2.7097 2.7098 2.7098

Table 18 Condition number K (mesh 4 × 8)

ν = 0.499 ν = 0.4999 ν = 0.49999 ν = 0.499999 Remarks

α = 0.0 4.482 e+17 2.854 e+18 1.348 e+18 5.506 e+17 Hour-glass locking

α = (0.5 − ν) e − 02 1.167 e+11 1.169 e+13 1.171 e+15 1.037 e+17 Less well conditioned

α = (0.5 − ν) e − 01 1.167 e+09 1.169 e+11 1.169 e+13 1.173 e+15 Less well conditioned

α = (0.5 − ν) 8.009 e+08 7.997 e+09 1.169 e+11 1.169 e+12 Well cconditioned

α = (0.5 − ν) e + 01 7.905 e+08 7.961 e+09 7.991 e+10 7.995 e+11 //

α = (0.5 − ν) e + 02 6.836 e+08 7.735 e+09 7.889 e+10 7.959 e+11 //

α = 1.0 9.853 e+08 1.220 e+10 1.268 e+11 1.273 e+12 //

exact α-approach of the αFEM, we found αexact = 0.2547 at
the intersection of two strain energy curves using two meshes
with the same aspect ratio (64 and 144 elements), as shown in

Fig. 16. The solutions at αexact = 0.2547 are 23.962 for the
tip displacement and 12.014 for strain energy, which agree
very well with the reference solution.
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Fig. 15 Cook’s membrane
problem and its discretization
with the coarse mesh
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Fig. 16 Strain energy of the Cook’s problem (ν = 1/3)

Figure 17 compares the result of the tip displacement of
the αFEM with six published 4-node quadrilateral elements:
Q4-standard isoparametric 2 × 2 quadrature Gauss points,
Qm6-modified Wilson element [38], FB-one Gauss point
with hourglass stabilization [13], QBI-Quintessential ben-
ding/incompressible element [5], KF-one Gauss point with
hour-glass control [20] and Qnew—an improved stabiliza-
tion technique for one-point quadrature integration method
[14]. It can be seen that the result of the αFEM at α = 0.2547
is much more accurate than all those of other elements with
coarse meshes.

In addition to the results shown in Fig. 17, we also make
comparison of the αFEM with other elements for coarse
meshes, and the results in numbers are listed in Table 19:
Allman’s membrane triangle (AT) [1], assumed stress hybrid
methods such as Pian–Sumihara’s element (P–S) [31],
HQM/HQ4 element [40], Zhou–Nie’s element (CH(0–1))
[42] and Xie–Zhou’s element (ECQ4/LQ6) [41], finite
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Fig. 17 Convergence of displacement tip for Cook’s membrane (ν =
1/3)

element primal–mixed approach (FEMIXHB) introduced by
Mijuca et al. [29], QGA6-I and QGA6-II—the membrane
elements using the quadrilateral area coordinate approach by
Chen et al. [10], QACM4—the membrane elements using the
quadrilateral area coordinate approach by Cen et al. [9] and
QACII6—the membrane elements using the new quadrilate-
ral area coordinate method by Chen et al. [11]. It is found that
the αFEM gives the best results compared to other elements,
especially in term of strain energy.

6.4 Infinite plate with a circular hole (zero-α approach)

Figure 18 represents a plate with a central circular hole of
radius a = 1 m, subjected to a unidirectional tensile load of
σ = 1.0N/m at infinity in the x-direction. Due to its sym-
metry, only the upper right quadrant of the plate is modeled.
Plane strain condition is considered. Symmetric conditions
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Table 19 Results of displacement tip and strain energy for Cook’s problem

Displacement tip Strain energy

2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8

AT 19.67 (27)∗ 22.41 (75) 23.45 (243) 9.84 11.22 11.75

P-S 21.13 (18) 23.02 (50) 23.69 (162) 10.50 11.51 11.85

CH(0 – 1) 23.01 (18) 23.48 (50) 23.81 (162) 11.47 11.75 11.91

ECQ4/LQ6 23.05 (18) 23.48 (50) 23.81 (162) 11.48 11.75 11.91

HMQ/HQ4 21.35 (18) 23.04 (50) 23.69 (162) 10.61 11.52 11.85

FEMIXHB 22.81 (35) 23.52 (135) 23.92 (527) 11.27 11.79 11.97

AGQ6-I 23.07 23.68 23.87 – – –

AGQ6-II 25.92 24.37 24.04 – – –

QACM4 20.74 22.99 23.69 – – –

QACII6 25.92 24.37 24.04 – – –

α FEM 24.94 (18) 23.99 (50) 23.966 (162) 12.45 12.068 12.014

Reference value 23.9642 23.9642 23.9642 12.015 12.015 12.015

∗ Number of degrees of freedom denoted in parenthesis

Fig. 18 Infinite plate with a
circular hole and its quarter
model

are imposed on the left and bottom edges, and the inner boun-
dary of the hole is traction free. The exact solution for the
stress is [39]

σ11 = 1 − a2

r2

[
3

2
cos 2θ + cos 4θ

]
+ 3a4

2r4 cos 4θ

σ22 = −a2

r2

[
1

2
cos 2θ − cos 4θ

]
− 3a4

2r4 cos 4θ (50)

τ12 = −a2

r2

[
1

2
sin 2θ + sin 4θ

]
+ 3a4

2r4 sin 4θ

where (r, θ) are the polar coordinates and θ is measured
counterclockwise from the positive x-axis. Traction boun-
dary conditions are imposed on the right (x = 5.0) and
top (y = 5.0) edges based on the exact solution Eq. (50).
The displacement components corresponding to the
stresses are

u1 = a

8µ

[
r

a
(κ + 1) cos θ + 2

a

r
((1 + κ) cos θ + cos 3θ)

−2
a3

r3 cos 3θ

]

(51)
u2 = a

8µ

[
r

a
(κ − 1) sin θ + 2

a

r
((1 − κ) sin θ + sin 3θ)

−2
a3

r3 sin 3θ

]

where µ = E/ (2 (1 + ν)) , κ is defined in terms of Poisson’s
ratio by κ = 3 − 4ν for plane strain cases.

Figure 19 gives the discretization of the domain using 4-
node quadrilateral elements. Figures 20, 21 and 22 show,
respectively, the strain energy, the error norms of energy and
displacement of the infinite plate with a circular hole using
three meshes (12 × 12), (16 × 16) and (20 × 20) for α ∈
[0, 1]. It is clear from Fig. 20 that the αFEM solution (in
strain energy) at α = 0.0 is an underestimation of the exact
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Fig. 19 Domain discretization of the infinite plate with a circular hole
using 4-node quadrilateral elements
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Fig. 20 Strain energy of the infinite plate with a circular hole

solution, because the strain energy E (α = 0.0)of a fine mesh
is larger than that of a coarse mesh. As an expected result
from Theorem 3, the strain energy at α = 0.0 is closest to
the exact energy for each mesh used. The standard FEM is
impossible to predict this. The results in Fig. 20 also show
that the computed strain energy is always an underestimation
of the exact energy (obtained using a fine mesh of 80 × 80)
for any α ∈ [0, 1], and the strain energy approaches to the
exact strain energy from below when the mesh becomes finer.
In this case, the energy-α curves do not intersect each other
and the energy error norm obtains the minimum value at
α = 0.0 as shown in Fig. 21. The displacement norm obtains
the minimum value at a little different value of α (here at
α ≈ 0.1 as shown in Fig. 22). Note that there is no hour-glass
mode at α = 0.0 in this case as this is an underestimation
problem.
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Fig. 21 Energy error norm of the infinite plate with a circular hole
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Fig. 22 Displacement error norm (%) of the infinite plate with a cir-
cular hole

The above results show that if the energy at α = 0.0 is an
underestimation of the exact energy, we only have the basis
to choose the solution with the best energy error norm (at
α = 0.0). The choice of α for the best displacement solution
is not obvious.

6.5 Connecting bar: a practical application: (zero-α
approach)

This example performs a static analysis of an automobile part,
a connecting bar with a relatively complex configuration, as
shown in Fig. 23. The boundary conditions as well as the
applied load are demonstrated in this figure with p = 1 MPa.
Plane stress problem is considered with elastic modulus E =
10 GPa and Poisson’s ratio ν = 0.3.
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Fig. 23 Geometric model and boundary conditions of an automobile
connecting bar

Figure 24 gives the discretization of the domain using 3
meshes (919, 1580 and 3420 nodes) with 4-node quadrila-
teral elements. As no closed form solutions are available, a
reference solution is obtained using the standard FEM with
22788 nodes.

Figure 25 shows the strain energy of the connecting bar
using three meshes (919, 1580 and 3420 nodes) for α ∈
[0, 1], respectively. The results also show the same properties
as those of the infinite plate with a circular hole. The αFEM
solution (in strain energy) at α = 0.0 is an underestimation
of the exact solution, because the strain energy E (α = 0.0)

of a finer mesh is larger than that of a coarser mesh. As an
expected result from Theorem 3, the strain energy at α =
0.0 is closest to the exact energy for each mesh used. The
computed strain energies are always an underestimation of
the reference strain energy obtained using the standard FEM
with 22788 nodes for anyα ∈ [0, 1], and these strain energies
approaches to the reference strain energy when the meshes
become finer.

7 Conclusion

In this work, we propose the αFEM based on the framework
of FEM but incorporating the strain and Jacobian matrix with
a scaling factor α. Through the theoretical analyses, formu-
lations and numerical examples, some conclusions can be
drawn as follows:

1. The αFEM gives a continuous form of the solutions ran-
ging from the standard FEM using the reduced integra-

a) mesh 1 (919 nodes)

b) mesh 2 (1580 nodes)

c) mesh 3 (3420 nodes)

Fig. 24 Domain discretization of the connecting bar using three
meshes a Mesh 1 (919 nodes); b Mesh 2 (1580 nodes); c Mesh 3 (3420
nodes)
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Fig. 25 Strain energy of the connecting bar

tion to the standard FEM using the full Gauss integration
by changing the parameter α from 0.0 to 1.0. By using
0.0 ≤ α < 1.0, the αFEM can reduce the overestima-
tion of the stiffness matrix of standard FEM model and
produce much more stable and accurate solution without
increasing computational cost.
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2. The strain energy of the solutions in the αFEM is a fourth
order function of the scaling factor α. This strain energy
function with α ∈ [0, 1] is finite and bounded from
above and below by the strain energies E (α = 0.0) and
E (α = 1.0), respectively. This implies that the αFEM
with α ∈ [0, 1] is energy consistent and capable of repro-
duce exactly all linear fields, and hence converges to any
continuous fields.

3. A simple approach has been proposed to determine where
the problem is: overestimation or underestimation pro-
blems. For overestimation problems, the exact-α
approach is proposed to determine an αexact at which
the solution of the strain energy is exact and the error
norm of displacement of the solution obtains its mini-
mum. The error norms of energy and displacement at
αexact using a very coarse mesh are significantly more
accurate than those at α = 0.0 and α = 1.0 using very
fine meshes. For underestimation problems, the zero-α
approach is proposed to provide the solution in the strain
energy that is closest to the exact solution.

4. For the overestimation problems, the αFEM using α ∈
[αsta

1 , αsta
2 ] for the compressible materials will ensure the

numerical stability and the solution in the strain energy is
almost the same with that of the FEM using the reduced
integration. In addition, using the αFEM with small-α
approach (α ∈ [αvol

1 , αvol
2 ]) is an effective way to avoid

the volumetric locking.
5. Coding of the αFEM is very simple. It is nearly the

same as the standard displacement compatible FEM. The
changes are only to the strain and Jacobian matrices, and
hence can be very easily implemented. The computation
cost of the αFEM is the same as the standard FEM with
full integration.

6. Comparing to other finite element formulations, like
mixed finite elements or under integrated and stabili-
zed elements, the first benefit of the αFEM is that it
has general schemes to find the solution with the exact
strain energy for the overestimation problems and to find
the best possible solution for the underestimation pro-
blems. The second benefit of the αFEM is the ease of
implementation without much modification to the exis-
ting FEM codes. In the αFEM, we only need to determine
suitable value α and the numerical procedure is almost
similar to that for the standard FEM, while others finite
element formulations need special techniques to formu-
late the stabilization matrix or calculate mixed stiffness
matrix.

The ideal of αFEM can be extended to other types of
problems, such as 3D problems, geometric and elasto-plastic
nonlinear problems, because the implementation procedure
in αFEM is quite similar as the FEM. Other types of locking

problems can also be delt with properily manipulating the
gradient of the field gradient. More works need to be done
along this direction.
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